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The two-stage explicit-implicit method originally developped by MacCormack is extended 
to non-conservative equations. Different models using transport equations are presented. .4 
special attention is paid to the conservation of total energy and to the correct treatment of the 
turbulent pressure terms. The implicit treatment of the source terms is detailed. The numerical 
method is applied to two turbulent flow calculations: (i) the 2-dimensional transonic flow over 
a bump, using either mixing length or two equation turbulence model; (ii) the supersonic 
compression+xpansion ramp using a full Reynolds stress model as turbulence closure. 
‘c, 1986 -\cadsmic Press, Inc. 

1. INTRODUCTION 

During the past few years, significant progress has allowed to improve efficiency 
of computer solution algorithm for the viscous compressible Navier-Stokes 
equations. The implicit schemes brought up the concept of unconditional stability 
for unsteady or pseudo-unsteady numerical methods and it became possible to use 
high resolution grid for the treatment of viscous regions in high Reynolds number 
flows. The extension to turbulent flows was then possible by solving the Reynolds 
averaged Navier-Stokes equations and replacing the molecular diffusivity coef- 
ficients with their “effective” counterpart, including a locally defined turbulent 
viscosity. The major advantage of this algebraic-type turbulence model is to keep 
unchanged the structure of the motion equations and thus, most of the 
Navier-Stokes solvers could readily be extended to turbulent flows calculations. 
Unfortunately, although such a turbulence model does a fairly good job for 
equilibrium or weakly out-of-equilibrium flow prediction, the results are very poor 
when extra strain is applied to the turbulence field. As examples, we could mention 
curvature effects, strong shock waves, recirculation zones, or rotation effects. 
Attempts were made to improve complex flow predictions by introducing more 
sophisticated turbulence models. Following a first attempt with an explicit 
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Mavier-Stokes solver by Baldwin, MacCormack, and Deiwert et al [I I], Viegas 
and Coakley [ 121 added one equation for the turbulent kinetic energy [ 13 ] in the 
hybrid method of MacCormack [14]. As the results with this model were not 
found significantly better, the method was extended to two-equation models in 
order to remove the uncertainty about the turbulent length scale determination. 
From that date, several two-equation turbulence models have been extensively used 
for complex flow calculations [ 15, 16, 171. In the present work, the coupling which 
was not considered in the former references is examined for multi-equation tur- 
bulence models and new results obtained with a Reynolds stress (second order) !u:- 
bulence closure are reported. 

The compressible Navier-Stokes equations can be written in the following con- 
servative form, for two-dimensional flows: 

where 

and where 

pm + 7>., 
C= PC’ + T>.) 
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with p the density, u and v the velocity components with respect to .x and y com- 
ponents, /2 and p the viscosity coefficients, E the specific total energy, K the heat 
conduction coefficient and T the absolute gas temperature. Body forces and heat 
sources are not considered here although their existence would not bring any major 
change to the method. The pressure p is related to the specific internal energy 
according to the equation of state: 

p=(‘i’--l)pe (4) 

with 

6~ = E - (~1~ + v’)/2 (5) 

7 is the specific heat ratio. 
The use of density-weighted average over the velocity field produces a set of 

equations applicable to turbulent flows. But then, the closure problem arises, for 
which the simplest solution is the use of a gradient flux approximation, similar to 
the Boussinesq proposal. Thus the turbulent viscosity can be determined from an 
algebraic relationship or from local turbulent quantities such as the turbulent 
kinetic energy, its dissipation rate or a turbulence length scale. The determination 
of these quantities requires the solution of non-conservative transport equations. 
For complex flows, it may be necessary to use a second-order closure which implies 
the solution of transport equations for every unknown statistical correlation 
emergent from second-order moment truncation. The introduction of these new 
equations adds constraints to the numerical method and occasionally reduces its 
generality. 

In addition to the natural coupling due to the Reynolds stress terms (the closure 
problem), dependences appear in the total energy budget and in the pressure terms. 
A special treatment is needed for the source terms as well. 

This paper sheds light on these new constraints in the framework of the MacCor- 
mack implicit predictorcorrector scheme [l], although these remarks can be 
applied to other numerical techniques which solve turbulence transport equations 
together with the compressible time averaged Navier-Stokes equations. 

2. TURBULENCE EQUATIONS 

When using density weighted averaging in conjunction with a two-equation tur- 
bulence model, the complete set of equations can be written as: 
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where 

The diffusive fluxes are defined according to 
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The shear stresses are now written as 

(12) 

where 

f,( is a turbulent Reynolds number dependent function which accounts for the wall 
vicinity effects. S, and S, terms embody all the source terms which cannot be 
included in the divergence part of the equations for k and E. 

With a second-order closure model, the set of equations is written according to 
(1) with 

F= 

(ljj 

(16) 
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The stresses with that type of model are 

The S, terms are the sources of the transport equations for the turbulence quan- 
tities. In all the previous equations, the molecular viscosity fluctuations have been 
neglected. In fact, the detailed form of the modeled equations -would show more 
terms than presented in Eqs. (15) to (19). Nevertheless, the structure of the 
equations is the same, and as the present paper is devoted only to the com- 
putational aspects of this effort to solve the Navier-Stokes equations, the reader is 
sent back to the references [2,3,4] for a detailed description of the turbulence 
modeling aspects of the problem. 

3. THE COUPLING IPROBLEM 

The instantaneous form of the total energy definition is 

E=e+uf/2 (20) 
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with e standing for the internal energy of the fluid. In terms of mean and fluctuating 
components, this equation becomes, after time-averaging, 

,?=&$/2+k. (21) 

Therefore, when solving the Navier-Stokes equations, it appears clearly that the 
turbulent kinetic energy, k, must be known to determine the internal energy and the 
pressure field. For incompressible flow calculations, the energy budget is ignored 
and the turbulent motion is only superimposed on the mean. The coupling appears 
only through the turbulent friction which is added to the viscous effects. However, 
for compressible flows calculations, all energetic exchanges between the different 
scale motions must be considered to satisfy the energy conservation. 

The Boussinesq approximation for the Reynolds stress is written as 

where the presence of the turbulent kinetic energy term allows the contracted index 
form. This feature appears in the momentum and total energy equations where a 
turbulent normal stress is added to the mean pressure term. Therefore a so-called 
effective pressure can be defined in the following way: 

p*=P+$k. (231 

In fact, this scalar turbulent contribution to the pressure field is only an 
approximation which neglects the anisotropic nature of the Reynolds stress tensor. 
Such an approximation does not exist formally with a second-order closure tur- 
bulence model. The normal stresses appear explicitly in the momentum and total 
energy equations. The corresponding effective pressure is not isotropic any longer 
but depends also on the distribution of the turbulent energy on its three normal 
components. In the i-momentum equation the effective pressure will be 

Nevertheless, the concept of anisotropic effective pressure is difficult to handle, 
especially when relating to the temperature field. Therefore the scalar contribution 
is assumed for computational convenience. The addition to the static pressure is 
motivated by the equilibrium definition from the kinetic theory of gases, where the 
turbulent pressure is approximated with the average value fpk. 

In some sense, the introduction of this effective pressure is analogous to the 
appearance of bulk viscosity in flows with translational non-equilibrium [S], for 
which a thermodynamic or equilibrium pressure can be defined in terms of p and 7: 
which themselves have unambigous physical definitions. As in the bulk viscosity 
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situation, two different mean temperatures can be distinguished, the static and ihe 
effective temperatures F an T*: 

ji=pRF 1 2k 
p* =pRT* + T* -- T=z’ 

Then, it is easy to show that the relative difference in temperature i.s very small 
(less than 1%). Also when looking at the definition of the effective pressure, the tur- 
bulent contribution is small compared to the static pressure; nevertheless in highly 
sheared regions, the gradient of k can be twice as large as the conventional pressure 
gradient. 

4. THE NUMERICAL TREATMENT OF THE EQUATIONS 

4.1. Diagonalisation of the Jacobian Matrices 

In order to avoid the classical stability limitations of explicit schemes, an implicit 
operator allows the use of large time steps. At each time step, the explicit increment 
is updated with the solution of a transport equation. That equation is obtained by 
taking the time derivative of the original vector equation [ 13. 

we have 

where 

The complete approximate factorization of this equation yields 

The implicit part b u” + ’ of the increment is calculated from the explicit part 4 L;“. 
To solve that equation for 6U”+ ‘, it would be necessary to go through a block 
tridiagonal algorithm which is both memory and time consuming. To avoid this, an 
elegant and efficient method consists in diagonalizing the jacobian matrices. Then 
the solution is obtained only by inverting a lower or upper bidiagonal matrix ‘111. 

In the following developments, it will be shown that the turbulence energy needs 
to be included in the diagonalization process. Then the specific treatment of the 
scsurce terms will be explained and discussed. 
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In a first step, the viscous terms are set to zero. All these effects will be restored at 
a later stage in the algorithm. The diagonalization of the jacobian matrices 
corresponds to the transformation of the conventional conservative variables into 
nonconservative and then characteristic quantities. With a two-equation turbulence 
model, the first transformation of conservative into nonconservative variables is 
done with the matrix product: 

sun,= sx, . su, 

where 

SU,= 

sx, = 

&P) 
J(G) 

SXl 
- sun,= 

S(G) 
&P*) 
S(k) 

(j(E) 

1 0 0 0 0 0’ 

t7 1 
-- 0 T 0 0 0 P 

P 
a/3 -/Iii -pc p -p 0 

-5 l 0 0 0 0 
P 

T 
P 

& 1 
-- 0 

li 
000: 

p 

Wa) 

Wb) 

The transformation of nonconservative to characteristic variables follows as (for 
the x operator): 

6 Uchar = sxp 6 u,, 

S(P) -’ c*2 4P*) 

6(p*) + jk*iqi-q 

46) 
S( p*) -@*s(E) 

a(k) 

d(E) 

@la) 
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where 

1 0 
1 

0 p? 0 0 

0 pc* 0 1 0 0 
0 0 10 0 0 
0 -pc* 0 1 0 0 
0 0 00 10 
0 0 00 0 I 

The direct transformation is made with the matrix product 

--- 
I kl 
I-= I 0 
I PI 
I I 
I-: I 0 
I PI --- 

Then it is straighforward to show that 

I I 
lkl 

; k I I r-1 
----I 

I 2ce2 I 
0 

( k \ 
\9 

I I /p/ /g \ 

I I I I / \ 

l-5 
‘I 

I 2c*2 I 
0 & 1 i-- 

/ &A i 61, I;’ 
I --_- ---- ‘-- 
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The transformed matrices SY and SY-’ for the ,V operator have a similar form 
and are not reproduced here. In SX and SX-‘, the dashed frames show the con- 
tributions of the new equations when added only to the original system. The solid 
frames show the result of the coupling between the equations due to the energy 
budget. The speed of sound c*, which is used here must be interpreted as the effec- 
tive speed defined previously. 

Thus, the turbulence energy terms appear explicitly in the jacobian matrix. 

A= 

0 1 0 0 0 0 
y-3 /?a' 
-1?'+- 2 2 (3-y)li: -/% p -/I 0 

-65 L; 22 0 0 0 

2fliicl - y,% + 0 ,L%k p? 
3ii2 + 6' 

- /I 2 pq -/xii7 yii 0 J-Btil 

I----l , -iik , l---l I k I 0 0 IT-, ,u 
I I I I \ Y0 

\ 
I I 
IL?!! -I 

I I 
I- E -I 0 0 O’\\ l2 1 

p=y- 1; a = (z? + fi2)/2. 

It is easy to verify that the diagonal matrix is 

I 

22 0 0 0 00 
0 ii+c* 0 0 0 0 
0 0 ii 0 00 

AA= 

0 0 0 ii-c” 0 0 
0 0 0 0 ii0 
0 0 0 0 06 

where 

.4 = sr ’ . A A . sx. 

(33) 

(34) 

The restoration of the viscous effects is made as described in the original paper of 
MacCormack through a change of the eigenvalues [I]. 

With a second-order closure model, the turbulence energy is explicitly distributed 
on its three normal components. To illustrate this feature, only the jacobian matrix 
A is shown here, but the derivation method is similar for the transverse direction. 
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0 

5. IMPLICIT TREATMENT OF THE SOURCE TERMS 

The implicit increment obeys the following approximate transport equation: 

The A and B matrices have been defined previously, assuming an inviscid charac- 
ter of the equations. Similarly the Jacobian matrix for the source terms is wriiren a< 

6H= C.ciU. (“71 

As the content of H is much more complex than for F and 6, it is not possible to 
derive a analytical form for its jacobian matrix. To keep some generality for the 
expression of C, the structure of the H content is assumed unknown, and C is writ- 
ten as 

00000 0 0 
00000 0 0 
00000 0 0 
000000 0 ~ 

00000~0 

00000 0 3 
p& 
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with S, and S, the respective sources of k and E equations. Obviously, in a second- 
order closure turbulence framework, the matrix C has a higher dimension but is 
defined on the same principle. If we follow the inversion process, the explicit 
increment is modified first by the source matrix before being updated by the spatial 
derivative operators: 

(38) 

A different approach of this treatment avoids the third factorization. Then the 
source are grouped to the transverse spatial derivative term through the maximum 
eigenvalue [6]. In that case, the same maximum increment is applied to the whole 
set of nonconservative transport equations. A second alternative is being followed 
by Viegas [7]. This consists of simplifying part of the source terms (by elimination, 
for instance) to allow the derivation of an analytical form for the jacobian matrix. 
This approach tries to be more rigorous in the implicit approximation but seems 
usable only for simple two equation models. As far as second-order closure is con- 
cerned, in spite of already too numerous simplifications, the analytical form is not 
yet accessible. The lack of flexibility of this last method makes any specific work on 
the turbulence models themselves difficult. 

6. APPLICATIONS 

6.1. Tramorzic nozzle 

To illustrate the capacity of this numerical method to predict turbulent flows, a 
time dependant calculation is presented which converges on, a steady state solution. 
The 2-dimensional transonic flow which was submitted by Delery [S] to the 1981 
Stanford conference is used as a test case. 

Figures 1 to 5, extracted from the conference preparation notes, show the main 

p zO.95 bar 

T =300’K 

Dimensions in mm 

FIG. 1. Nozzle set-up 
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t- 0.55 I 

I 

Circular r-422.57 

FIG. 2. Nozzle geometry. 

Dimensions in mm 

features of the flow. In Fig. 1, the nozzle set-up is presented. A bump. for which the 
exact profile is given on Fig. 2, is mounted on the lower wall of a transonic nozzle. 
The, inlet Mach number is 0.63. The flow is accelerated by the bump until an 
asymptotic Mach number value (close to 1.4) is reached. The downstream pressure 
which is controlled by an adjustable second throat produces a normal shock wave 
above the bump trailing edge. The pressure gradient, induced by this shock wave :s 
strong enough to create a boundary layer separation with an extended recirculation 
zone. 

FIG. 3. Flow aspect. 
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200 300 R Xlmm) 400 

F[G. 3. Mach number distribution (from measured pressure). 

This largge separation region produces an oblique shock C, issued from the 
separation point (Fig. 5). Downstream of C,, the flow which is still supersonic? 
meets a quasi-normal second shock. The two shocks C, and Cz join each other 
above the interaction zone to form an unique normal shock wave across the 
remaining part of the nozzle. The separated region corresponds to a plateau-like 
shape of the lower wall pressure curve (Fig. 4). The respective positions of the 
separation and reattachment points have been evaluated experimentally at 0.260m 
and 0.325m from the bump leading edge. The reservoir conditions are: 

p. = 95000N/m’ To = 300°K 

the boundary layer at the beginning of the interaction zone is characterized by 

Mach number = 1.36 6 = 0.005m 

6* = 0.000518m 6’ = 0.000265m 

the momentum thickness Reynolds number is Re, = 3800. 

FIG. 5. Flow structure. 
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The initialization is done, assuming constant pressure and Mach number in the 
whole field, in spite of the lower wall geometry. A no-slip condition is imposed on 
the wall boundary. As inlet boundary conditions, the mass flow and the total 
enthalpy are conserved. The velocity is parallel to the walls and a characteristic 
relation supplies the downstreamPupstream influence. At the exit boundary, the 
static pressure is given, whereas all other flows variables are evaluated oniy from 
the calculation domain. It was found impossible to start the calculation with the 
complete turbulence model. A correct initialization of the turbulence variables was 
very difficult to perform and the permissible time step has too small to build the 
mean flow efficiently. A complete calculation was done in the following way: 

1. Algebraic model calculation. 

2. Uncoupled turbulence field calculation. 

3. Full two-equation model calculation 

4, Check of the steady state solution independence with respect to the time 
step value. 

Tile first stage builds efficiently the mean field in agreement with the no-slip 
boundary conditions and the geometrical nozzle properties (Fig. 4). 

The switching to the two-equation turbulence model shows a signifirant flow re- 
organization in and above the interaction region (Fig. 7). The shock wave changes 
shape and moves downstream in the inviscid part whereas the separation is enhan- 
ced in length and thickness. As the eddy viscosity is now very small in the inviscid 
part, the numerical upper wall boundary layer dispears in agreement with the mesh 
resolution. 

The results, corresponding respectively to the mixing length and the two equation 
model, are presented on Figs. 8 to 12. Figure 8 shows the shock position for the 
algebraic model calculation. The shock wave is curved across the channel an(? 

0.10 

'8 0.05 

0.00 

-0.10 -0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.33 0.35 ; 4 0 

x 
TURBULENCE MODEL MI KING LENCT7I 

FIG. 6. Mixing length soiaion. 
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TURBULENCE MODEL TWO EQUATIONS 

TIME STEP = 1609FlO* TIME STEP NUMBER = 1600 

ELAPSED TIME = 7.f3tX0104 

FIG. 7. k-epsilon solution. 

0.253 0.263 0.273 0.;83 0.;93 On;03 0.313 0,323 0,333 

Isomoch lines X(mr 

FIG. 8. Zero-order closure (algebraic model) 
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FIG. 9. Zero-order closure (A; --~j. 

located about 4cm upstream of the experimentally observed position. The 
separation cannot be observed, and so the expected shape of the shock wave. 

Figure 9 shows a great improvement with the two equation turbuience model. 
The separated zone limits are correctly predicted. The weak oblique shock c‘: 4s 
well described with a large downstream supersonic zone. But the second normal 
shock C2 is not predicted and the transition between the supersonic and su’bsonlc 
regimes is smooth. .4 consequence of that feature is the absence of a contact surface 
behind the expected triple point. This characterizes the failure of the turbulence 

0.8 
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0.5 

0.4 

0.3 

Xhf 

0.2 
Q.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 a.4c;a 

FiG. IO. Lower wall pressure. 
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model. In a different paper [3], the turbulence modeling effort, related to this work 
has been exposed and the weakness of this class of model has been explained. 

Figure 10 compares the pressure distributions on the lower wall. The agreement, 
which is obtained with the second model is remarkably better, the plateau pressure 
corresponding to the separated region is well predicted. whereas the mixing length 
calculation does not catch this extended separation region. Nevertheless, in both 
cases, the pressure distributions are correctly described before and after the intrac- 
tion zone. 

The absence of any smoothing technique in the code allows the existence of 
oscillations around the shock wave, where the viscous effects are not important 
(Fig. 11). The decision, not to include any smoothing parameter has been taken to 
avoid the interferences between the turbulence model and the numerical diffusion 
terms. This allows also a very accurate definition of the shock wave location. 

Figure 12 compares the velocity distributions with the measured values at dif- 
ferent locations, before, inside and after the interaction region. As it could be expec- 
ted from the wall pressure results, the second model provides a much better predic- 
tion but this result is not yet quite satisfactory. Indeed, an under estimation of the 
velocity modulus in the recirculation zone is still present and the profiles show a 
small defect in the transition zone between inviscid and viscous regions. 

6.2. Supersonic hteractiorz 

Calculations have also been performed with a second order closure model 
[2, 3,4] for a supersonic flat plate boundary layer and a 12-degree com- 
pression-expansion ramp. These calculations have allowed a significant 
improvement in the wall turbulence anisotropy prediction, together with a better 
understanding of the two equation type model limits. To illustrate this, Figs. 13-17 
show the results for the 12 degree deviation. The free stream Mach number is equal 
to 3 and the Reynolds number, based on the momentum thickness is 10,000. Figure 
13 show the mean flow features. The free stream flow follows the 
Rankine-Hugoniot jump conditions and the Prandtl-Meyer expansion rules. A 
more interesting observation regards the pressure gradient influence on the tur- 
bulence anisotropy (Figs. 1417). 

The k and u’;;;L curves are quite similar except in level. The pressure gradients 
induce the same effects on these two quantities, i.e., increase in compression and 
decrease in expansion. Differently, the second normal component 7 is marginally 
affected by the pressure gradients. But this last component is a driving quantity for 
ail the transverse diffusion mechanisms. As all the two equation turbulence models 
use a part of k to simulate the diffusion coefficient, a correct prediction is hopeless, 
due to the fundamentally different behaviour of k and 7. The Wilcos-Traci [lo] - 
model interprets k as zY2, but doing so, it looses all information about the k level 
and the definition of the turbulence scales. 

It must be noticed that the turbulence increase due to the pressure gradient 
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FIG. 13. Second-order closure. 
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FIG. 14. Calculated skin friction and pressure distributions. 



COUPLING OF TURBULENCE CLOSURE MODELS 

fix5 -----____ p------ -___- _. 

-1:“’ , I I,, 
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occurs at J+ =300, whereas the turbulence energy peak in an equilibrium boun- 
dary layer is located at J’ + =30. This remark holds also for the first and third nor- 
mal components, but not for the second one for which the maximum is already 
located at J’ + =300. 

7. CONCLUSION 

Different turbulence models have been introduced in a Navier-Stokes solver. The 
different coupling features between the density-weighted averaged NavierrStokes 
equations and the transport equations for the turbulent quantities have been 
examined. The justification of this coupling is provided by the requisite closure 
problem considering the various compressible flow energy transfer mechanisms 
between the mean and turbulent motions. 

Since in the implicit operator the jacobian matrices are diagonahzed to avoid the 
costly block tri-diagonal matrix inversion algorithm, the coupling yields some 
additive terms in the diagonalization matrices. Furthermore, the source term treat- 
ment is done by a third factorization which avoids the prior knowledge of the 
analytical content of the RHS terms. With all these characteristics, the prediction of 
the strong shock-boundary layer interaction in a 2-dimensional transonic nozzle 
has been possible. 

The results are better with a two equation turbulence model than with a classical 
algebraic formulation. Nevertheless, the turbulence quantities are still badly 
described. Further calculations for a supersonic 12 degree compressionexpansion 
flow show promising results with a second-order closure turbulence model. The 
weaknesses of the gradient flux approximation are particularly pointed out and the 
interest of this closure level extension to complex interacting flows is shown. 
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